Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Transl Med ; 16(735): eadh0027, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381848

RESUMO

Antifibrinolytic drugs are used extensively for on-demand treatment of severe acute bleeding. Controlling fibrinolysis may also be an effective strategy to prevent or lessen chronic recurring bleeding in bleeding disorders such as hemophilia A (HA), but current antifibrinolytics have unfavorable pharmacokinetic profiles. Here, we developed a long-lasting antifibrinolytic using small interfering RNA (siRNA) targeting plasminogen packaged in clinically used lipid nanoparticles (LNPs) and tested it to determine whether reducing plasmin activity in animal models of HA could decrease bleeding frequency and severity. Treatment with the siRNA-carrying LNPs reduced circulating plasminogen and suppressed fibrinolysis in wild-type and HA mice and dogs. In HA mice, hemostatic efficacy depended on the injury model; plasminogen knockdown improved hemostasis after a saphenous vein injury but not tail vein transection injury, suggesting that saphenous vein injury is a murine bleeding model sensitive to the contribution of fibrinolysis. In dogs with HA, LNPs carrying siRNA targeting plasminogen were as effective at stabilizing clots as tranexamic acid, a clinical antifibrinolytic, and in a pilot study of two dogs with HA, the incidence of spontaneous or excess bleeding was reduced during 4 months of prolonged knockdown. Collectively, these data demonstrate that long-acting antifibrinolytic therapy can be achieved and that it provides hemostatic benefit in animal models of HA.


Assuntos
Antifibrinolíticos , Hemofilia A , Hemostáticos , Lipossomos , Nanopartículas , Cães , Animais , Camundongos , Fibrinólise/genética , Antifibrinolíticos/farmacologia , Plasminogênio/farmacologia , Hemofilia A/tratamento farmacológico , RNA Interferente Pequeno , Projetos Piloto , Hemorragia/tratamento farmacológico , Hemostáticos/farmacologia
2.
J Clin Periodontol ; 51(4): 464-473, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38185798

RESUMO

AIM: WHIM (warts, hypogammaglobulinaemia, infections and myelokathexis) syndrome is a rare combined primary immunodeficiency disease caused by gain-of-function (GOF) mutations in the chemokine receptor CXCR4 and includes severe neutropenia as a common feature. Neutropenia is a known risk factor for periodontitis; however, a detailed periodontal evaluation of a WHIM syndrome cohort is lacking. This study aimed to establish the evidence base for the periodontal status of patients with WHIM syndrome. MATERIALS AND METHODS: Twenty-two adult WHIM syndrome patients and 22 age- and gender-matched healthy volunteers (HVs) were evaluated through a comprehensive medical and periodontal examination. A mouse model of WHIM syndrome was assessed for susceptibility to naturally progressing or inducible periodontitis. RESULTS: Fourteen patients with WHIM syndrome (63.6%) and one HV (4.5%) were diagnosed with Stage III/IV periodontitis. No WHIM patient presented with the early onset, dramatic clinical phenotypes typically associated with genetic forms of neutropenia. Age, but not the specific CXCR4 mutation or absolute neutrophil count, was associated with periodontitis severity in the WHIM cohort. Mice with a Cxcr4 GOF mutation did not exhibit increased alveolar bone loss in spontaneous or ligature-induced periodontitis. CONCLUSIONS: Overall, WHIM syndrome patients presented with an increased severity of periodontitis despite past and ongoing neutrophil mobilization treatments. GOF mutations in CXCR4 may be a risk factor for periodontitis in humans.


Assuntos
Síndromes de Imunodeficiência , Neutropenia , Doenças Periodontais , Periodontite , Doenças da Imunodeficiência Primária , Verrugas , Adulto , Humanos , Animais , Camundongos , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/diagnóstico , Doenças da Imunodeficiência Primária/complicações , Doenças da Imunodeficiência Primária/genética , Verrugas/genética , Verrugas/terapia , Neutropenia/complicações , Neutropenia/genética , Doenças Periodontais/complicações , Doenças Periodontais/genética , Periodontite/complicações , Periodontite/genética
3.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37261457

RESUMO

Neutrophil infiltration is a hallmark of periodontitis, a prevalent oral inflammatory condition in which Th17-driven mucosal inflammation leads to destruction of tooth-supporting bone. Herein, we document that neutrophil extracellular traps (NETs) are early triggers of pathogenic inflammation in periodontitis. In an established animal model, we demonstrate that neutrophils infiltrate the gingival oral mucosa at early time points after disease induction and expel NETs to trigger mucosal inflammation and bone destruction in vivo. Investigating mechanisms by which NETs drive inflammatory bone loss, we find that extracellular histones, a major component of NETs, trigger upregulation of IL-17/Th17 responses, and bone destruction. Importantly, human findings corroborate our experimental work. We document significantly increased levels of NET complexes and extracellular histones bearing classic NET-associated posttranslational modifications, in blood and local lesions of severe periodontitis patients, in the absence of confounding disease. Our findings suggest a feed-forward loop in which NETs trigger IL-17 immunity to promote immunopathology in a prevalent human inflammatory disease.


Assuntos
Armadilhas Extracelulares , Periodontite , Animais , Humanos , Histonas , Interleucina-17 , Inflamação/patologia , Periodontite/patologia , Neutrófilos/patologia
4.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37220746

RESUMO

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Assuntos
Antifúngicos , Candidíase , Animais , Camundongos , Complemento C5/metabolismo , Fagócitos/metabolismo
5.
Immunol Rev ; 314(1): 125-141, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36404627

RESUMO

Mucosal tissues are constantly exposed to the outside environment. They receive signals from the commensal microbiome and tissue-specific triggers including alimentary and airborne elements and are tasked to maintain balance in the absence of inflammation and infection. Here, we present neutrophils as sentinel cells in mucosal immunity. We discuss the roles of neutrophils in mucosal homeostasis and overview clinical susceptibilities in patients with neutrophil defects. Finally, we present concepts related to specification of neutrophil responses within specific mucosal tissue microenvironments.


Assuntos
Microbiota , Neutrófilos , Humanos , Imunidade nas Mucosas , Mucosa , Inflamação
6.
Blood ; 139(9): 1302-1311, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958662

RESUMO

Fibrinogen plays a pathologic role in multiple diseases. It contributes to thrombosis and modifies inflammatory and immune responses, supported by studies in mice expressing fibrinogen variants with altered function or with a germline fibrinogen deficiency. However, therapeutic strategies to safely and effectively tailor plasma fibrinogen concentration are lacking. Here, we developed a strategy to tune fibrinogen expression by administering lipid nanoparticle (LNP)-encapsulated small interfering RNA (siRNA) targeting the fibrinogen α chain (siFga). Three distinct LNP-siFga reagents reduced both hepatic Fga messenger RNA and fibrinogen levels in platelets and plasma, with plasma levels decreased to 42%, 16%, and 4% of normal within 1 week of administration. Using the most potent siFga, circulating fibrinogen was controllably decreased to 32%, 14%, and 5% of baseline with 0.5, 1.0, and 2.0 mg/kg doses, respectively. Whole blood from mice treated with siFga formed clots with significantly decreased clot strength ex vivo, but siFga treatment did not compromise hemostasis following saphenous vein puncture or tail transection. In an endotoxemia model, siFga suppressed the acute phase response and decreased plasma fibrinogen, D-dimer, and proinflammatory cytokine levels. In a sterile peritonitis model, siFga restored normal macrophage migration in plasminogen-deficient mice. Finally, treatment of mice with siFga decreased the metastatic potential of tumor cells in a manner comparable to that observed in fibrinogen-deficient mice. The results indicate that siFga causes robust and controllable depletion of fibrinogen and provides the proof-of-concept that this strategy can modulate the pleiotropic effects of fibrinogen in relevant disease models.


Assuntos
Afibrinogenemia/metabolismo , Fibrina/biossíntese , Fibrinogênio/biossíntese , Técnicas de Silenciamento de Genes , Lipossomos/farmacologia , RNA Interferente Pequeno , Afibrinogenemia/genética , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Feminino , Fibrina/genética , Fibrinogênio/genética , Humanos , Masculino , Camundongos , Nanopartículas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
7.
J Biol Chem ; 298(1): 101467, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871548

RESUMO

Bacillus anthracis lethal toxin and edema toxin are binary toxins that consist of a common cell-binding moiety, protective antigen (PA), and the enzymatic moieties, lethal factor (LF) and edema factor (EF). PA binds to either of two receptors, capillary morphogenesis protein-2 (CMG-2) or tumor endothelial marker-8 (TEM-8), which triggers the binding and cytoplasmic translocation of LF and EF. However, the distribution of functional TEM-8 and CMG-2 receptors during anthrax toxin intoxication in animals has not been fully elucidated. Herein, we describe an assay to image anthrax toxin intoxication in animals, and we use it to visualize TEM-8- and CMG-2-dependent intoxication in mice. Specifically, we generated a chimeric protein consisting of the N-terminal domain of LF fused to a nuclear localization signal-tagged Cre recombinase (LFn-NLS-Cre). When PA and LFn-NLS-Cre were coadministered to transgenic mice expressing a red fluorescent protein in the absence of Cre and a green fluorescent protein in the presence of Cre, intoxication could be visualized at single-cell resolution by confocal microscopy or flow cytometry. Using this assay, we found that: (a) CMG-2 is critical for intoxication in the liver and heart, (b) TEM-8 is required for intoxication in the kidney and spleen, (c) CMG-2 and TEM-8 are redundant for intoxication of some organs, (d) combined loss of CMG-2 and TEM-8 completely abolishes intoxication, and (e) CMG-2 is the dominant receptor on leukocytes. The novel assay will be useful for basic and clinical/translational studies of Bacillus anthracis infection and for clinical development of reengineered toxin variants for cancer treatment.


Assuntos
Antraz , Antígenos de Bactérias , Bacillus anthracis , Toxinas Bacterianas , Animais , Antraz/diagnóstico por imagem , Antraz/metabolismo , Antígenos de Bactérias/química , Antígenos de Bactérias/toxicidade , Bacillus anthracis/metabolismo , Toxinas Bacterianas/toxicidade , Citoplasma/metabolismo , Camundongos , Camundongos Transgênicos
8.
Science ; 374(6575): eabl5450, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941394

RESUMO

Tissue-specific cues are critical for homeostasis at mucosal barriers. Here, we report that the clotting factor fibrin is a critical regulator of neutrophil function at the oral mucosal barrier. We demonstrate that commensal microbiota trigger extravascular fibrin deposition in the oral mucosa. Fibrin engages neutrophils through the αMß2 integrin receptor and activates effector functions, including the production of reactive oxygen species and neutrophil extracellular trap formation. These immune-protective neutrophil functions become tissue damaging in the context of impaired plasmin-mediated fibrinolysis in mice and humans. Concordantly, genetic polymorphisms in PLG, encoding plasminogen, are associated with common forms of periodontal disease. Thus, fibrin is a critical regulator of neutrophil effector function, and fibrin-neutrophil engagement may be a pathogenic instigator for a prevalent mucosal disease.


Assuntos
Fibrina/metabolismo , Mucosa Bucal/imunologia , Mucosa Bucal/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Periodontite/genética , Plasminogênio/genética , Perda do Osso Alveolar , Animais , Armadilhas Extracelulares/metabolismo , Feminino , Fibrina/química , Fibrinogênio/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Microbioma Gastrointestinal/fisiologia , Gengiva/imunologia , Humanos , Imunidade nas Mucosas , Antígeno de Macrófago 1/metabolismo , Masculino , Camundongos , Mucosa Bucal/microbiologia , Periodontite/imunologia , Plasminogênio/deficiência , Plasminogênio/metabolismo , Polimorfismo de Nucleotídeo Único , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo
9.
Immunol Rev ; 287(1): 226-235, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565245

RESUMO

Periodontitis is a common human inflammatory disease. In this condition, microbiota trigger excessive inflammation in oral mucosal tissues surrounding the dentition, resulting in destruction of tooth-supporting structures (connective tissue and bone). While susceptibility factors for common forms of periodontitis are not clearly understood, studies in patients with single genetic defects reveal a critical role for tissue neutrophils in disease susceptibility. Indeed, various genetic defects in the development, egress from the bone marrow, chemotaxis, and extravasation are clearly linked to aggressive/severe periodontitis at an early age. Here, we provide an overview of genetic defects in neutrophil biology that are linked to periodontitis. In particular, we focus on the mechanisms underlying Leukocyte Adhesion Deficiency-I, the prototypic Mendelian defect of impaired neutrophil extravasation and severe periodontitis.


Assuntos
Síndromes de Imunodeficiência/genética , Selectina L/genética , Mutação/genética , Neutrófilos/fisiologia , Periodontite/genética , Animais , Diferenciação Celular , Quimiotaxia , Humanos , Síndromes de Imunodeficiência/imunologia , Periodontite/imunologia
10.
Matrix Biol Plus ; 1: 100003, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33543002

RESUMO

Macrophage plasticity, cellular origin, and phenotypic heterogeneity are perpetual challenges for studies addressing the biology of this pivotal immune cell in development, homeostasis, and tissue remodeling/repair. Consequently, a myriad of macrophage subtypes has been described in these contexts. To facilitate the identification of functional macrophage subtypes in vivo, here we used a flow cytometry-based assay that allows for detailed phenotyping of macrophages engaged in extracellular matrix (ECM) degradation. Of the five macrophage subtypes identified in the remodeling dermis by using this assay, collagen degradation was primarily executed by Ly6C - CCR2 + and Ly6C - CCR2 low macrophages via mannose receptor-dependent collagen endocytosis, while Ly6C + CCR2 + macrophages were the dominant fibrin-endocytosing cells. Unexpectedly, the CCL2/MCP1-CCR2 signaling axis was critical for both collagen and fibrin degradation, while collagen degradation was independent of IL-4Ra signaling. Furthermore, the cytokine GM-CSF selectively enhanced collagen degradation by Ly6C + CCR2 + macrophages. This study reveals distinct subsets of macrophages engaged in ECM turnover and identifies novel wound healing-associated functions for CCL2 and GM-CSF inflammatory cytokines.

11.
Mol Oncol ; 11(10): 1307-1329, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28510269

RESUMO

The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment.


Assuntos
Fibroblastos Associados a Câncer/patologia , Calicreínas/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Células Estromais/patologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Fator 1 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Receptor PAR-1/metabolismo , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA